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• Activation Likelihood Estimation employs cluster- (cFWE) and voxel-level family-wise error (vFWE) correction
• approximate a null distribution of spatial convergence, through monte-carlo simulation procedure [1,2]

• Random coordinates, but using experiment characteristics from original dataset
• At least 5000 - 10000 iterations required to converge, which takes many hours

• 95% of ALE computation time spent on monte-carlo simulation
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Hypotheses:
Ø Null-distribution of spatial convergence is fully 

determined by dataset characteristics
Ø Time intensive monte-carlo simulation can be 

replaced by machine learning prediction

Conclusion:
• Our model predicts 

significance thresholds 
in ALE meta-analyses 
with very high 
accuracy

• We advocate our 
efficient prediction 
approach as a 
replacement for the 
time-consuming 
permutation testing 
procedure in future 
ALE analyses. 

• This will save hours of 
computation time and 
energy consumption
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convergence for 
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learning

2. Model selection 
based on simulated 
data using a 10-fold 
CV scheme.

3. Prediction performance of the XGBoost regression for unseen naturalistic datasets.
• Red dot => outlier dataset; parameters out of range of training data 
• Parameter check necessary before prediction is trusted
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Training Data:
• Simulated 68100 datasets

with 10 to 150 
experiments
• parameter distributions 

similar to what is found 
in BrainMap’s 
functional database [3]

• Extreme datasets with 
high subjects/foci/both

• True labels: vFWE & 
cFWE tresholds using 
monte-carlo simulations 
with 15000 iterations.

Feature engineering:
• 23 features based on 

parameters of the dataset:
• Number of Experiments
• Number of Subjects
• Number of Foci

• Summary statistics:
• Total
• Mean/median
• SD/Skewness/Kurtosis
• Ratios

• Created by trial-and-error 
& optimization after 
establishing a baseline 

Performance and 
Validation:
• Model selection:

• 10-fold CV on 
simulated data.

• Linear Regression, 
Ridge Regresssion, K-
nearest Neighbour, 
Random Forest, 
AdaBoost, XGBoost [4]

• External Validation:
• 21 real-life ALE 

contrasts
• broad range of domains

and dataset sizes.
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4. Feature importance 
for XGBoost models
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